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Cumulative Damage Threshold Crossing Models
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~ This paper describes a model for survival functions called the cumulative
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Abstract

damage threshold crossing model. Under this model, an item, consisting of

a large mumber of components which suffer damage at regular moments of time,

fails as soon as the maximum cumulative damage to some component crosses a
certain threshold. Under various conditions on the damage distribution, two

plausible new survival distributions
N "’WW‘M

J

Sl(t) = exp{-exp(aoet”-yt';‘)}. t>0, -»<g<=, >0 and y >0,

and

Sz(t) = exp{-Bt(llt-y)'“}, D<t<l/y, a>-1, >0 and vy >0

Oh@
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" arise. —The- survival function Sl(-) is shown to fit several data sets in the

s T,

A

area of cancer studies, failure times of insulating fluids and failure times

of air conditioning units.
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1. Introduction.

The achievements of Reliability Theory depend largely on successful
modelling of survival functions of lifetimes. The famous *shock model* of
Esary, Marshall and Proschan (1973) can be described as follows. An item
is buffeted by shocks which arise according to a Poisson process. Each shock
causes a random damage and the damages accumulate. The item fails as soon as
the curulated damage exceeds a certain threshold. Further generalizations
of this model have appeared in the literature, e.g. A-Hameed and Proschan
(1973, 1975). Only qualitative properties of survival functions under this
model were studied in these papers. The survival functions were not fitted
to actual data.

The classical results of Gnedenko (1943) on the three types of asymptotic
distributions for an extreme observation lend themselves naturally to the
modelling of survival functions. That is why in many applications, survival

functions are assumed to be Weibull

a.n S,(t) = expl-@)®}, t>0, a>0, 8>0,

,

or to be the shifted Weibull
(1.2) ss(t) = exp{‘ta(t'Y)la}: t>y, a>0, B>0, -w<cy<om

There are many variations to the use of Gnedenko's (1943) results in
modelling survival distributions. One can introduce dependence among the
observations, one can have spare parts which instantaneously replace parts
that fail and thus increase system life, etc. A partial list of references
that contain such extensions is, Ashar (1960), Birnbaum, Esary and Saunders
(1961), Davis (1952), Flehinger (1962), Harris (1970), Laurent (1958),
Schafer and Finkelstein (1962), Sen, Bhattacharyya and Suh (1973) and Weiss
(1961).
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In this paper we suggest a different model which can be described in
broad terms as follows. An item consists of a large number of components.

At regular monents of time, t = 1, 2, ..., random damages occur to the com-
ponents and the damages accumulate. The item fails as soon as the cumulative
damage to some component crosses a certain threshold.

It is easy to produce examples where such a model would apply. In cancer
studies one may define the onset of cancer as the time at which one of the
cells becomes mutant. Thus one may postulate that an organism consists of a
large mumber of cells, that the environment produces random malevolent effects
on the cells and that a cell becomes mutant when the cumulative malevolent
effect exceeds a certain threshold. Similar models can be postulated in other
situations like machines with a large number of parts, electronic equipment
with large numbers of transistors, diodes, etc.

For the simplest form of our model, we present some asymptotic results

in Section 2. This leads to two new survival functions

(1.3) Sl(t) = exp{-exp( mst;’-ﬂ:“’i )}, t>0, -»x<a<ce, >0, y>0

and
(1.4) S,(¢) = exp{-8t(1/t-y)"%)}, 0 <t<1l/y, a>-1, B>0, y>0.

The proofs of these results employ results on rates of convergence for moderate
and large deviations.

In Section 3 we fit our survival functions sl(-) and Sz(~) as well as
the classical ones 83(-) and 84(-) to a variety of data. The data come from
cancer studies in England and Wales, Doll (1971), from studies on insulating
fluids, W. Nelson (1972, 1975), and from air conditioning systems on Boeing
aircraft, Proschan (1963). It is gratifying to see that the new survival

function Sl(-) fits nearly all these data better than the others.
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The survival functions Sl(-), sz(-) and 83(-) each contain three parameters

a, B and v while 54(-) contains only two parameters a and 8. The survival
functions Sz(-). SS(') and S4(-) may have either zn increasing failure rate
(IFR) or a decreasing failure rate (DFR). For example, szc-) is IFRifa 20
and ss(-) and 84(-) are each IFR if g 21, On the other hand, Sl(-) is a

more flexible survival function. Sl(-) may, depending upon the values of

its parameters, be an IFR survival distribution or it may have an increasing
failure rate for small and large values of t while having a decreasing failure

rate for moderate values of t.

2. The survival functions Sl(-) and 82(')-

th

Consider an item that consists of k components. The i component suffers

damage Z; at time t = 1, 2, ... . Let Sit - jil zij be the cumulative damage
to component i at time t, 1 =1, ..., k, and let S;t = lzﬁksit be the maximum
cumulative damage suffered by any component. The cumulative damage threshold
crossing model that we propose in this paper postulates that the life of the

item is given by
(2.1) L = inf{t: S;tZd},

where d is the threshold.

We make the following simplifying assumption. The random damages
Zu, zu. eses 221, 222, evey sees 71<1' zk2’ «.+ 8re independent and identically
distributed with common distribution function F(-). One could relax this by
assuming that the vectors (Zu,... 'zkl)’ (212,... ,Zkz) » -.. 8re independent
and identically distributed or follow a special stochastic process. One could

also define the life of the item by

L = inf(t: Q(Slt,....skt) 2d},
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where ¢(*,...,*) is a function of the individual damages representing the
damage to the item. We propose to examine these generalizations in a future
paper.

Reverting our attention to the simple model, we obtain the asymptotic

distribution of S; as t + » and k = k(t) + » at a certain rate in Theorems 1

t
and 2. In Theorem 1 we assume, among other conditions, that F(-) has a finite
variance and obtain a double exponential asymptotic distribution. In Theorem 2
we assume, among other conditions, that F(+) has a support that is unbounded

1 2nd obtain a Weibull

above and a tail that decreases to 0 like a power of x
asymptotic distribution. By inverting these distributions to obtain the
approximate distribution of the lifelength L we are led to the survival

functions Sl(—) and 52(-) of (1.1) and (1.2).

Theorem 1. Let the mean u and variance o2 of F(+) be finite. Further, for

some q in (0,1), let F(.) satisfy

2 2
(2.2) 1 - F(z) = ofz~3*4 )(log z) (14 )/2)
and
(2.3) ] uzdF(u) = o(1/10g 2)
z

as z + », Let k = k(t) be an integer valued function satisfying
2

(2.4) ks t97/2

for large t. Set

(2.5) By = 0(t/2 log k)

and




(2.6) Bkt = ut ¢ o(2t log k)" - (1/2)ckt(log log k + log 4n).

']'hen. for-.<y<.. as t + o,
2.7 P(S§, S o, v+ B} + expl-exp(-y)}.

Proof: Since the zij's have finite varigxce, the random variables S, are
approximately normally distributed. The maximum of normally distributed
random variables has an asymptotic double exponential distribution. Condi-
tions (2.2)-(2.6) allow us to approximate moderate deviation probabilities
of sit adequately and then to use standard extreme value theory to establish
(2.7), as shown below.

Theorem 1 of Amosova (1978) on moderate deviations states that under

conditions (2.2) and (2.3),

(2.8) P(S,, > ut +xot¥} = (1-0(x)) (1+0(1))

it

uniformly for x in (0, q(log t)”), as t + o, where ¢(¢) is the standard
normal distribution function.

Notice that under condition (2.4), for any y,

R

where
(2.9) x, = (2 log )%+ (2 log k) *y - (1/2) (log log k + log 4x)} < q(log t)®
for large t. Thus

KP(S;, > 0, Y+ By} = K(1-0(x,)) (1+0(1)) » ™

ia

as t + » from (2.8) and a standard result on the maximm from the normal

distridbution, for instance see Galambos (1978, Sec. 2.2.3). Hence
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log P{Sy, < oy, y+By,} = k log P{S;, < ay,y+8,}
v -kP(S;, > o, y+B .} + -e”7,
vhich implies (2.7). 0O

In the next theorem we assume that the support of F(+) is unbounded
above and has a tail that goes to zero like a power of x"l. A distribution
F(*) can satisfy the conditions of both Theorem 1 and Theorem 2. For such
F(*), one can obtain two different asymptotic distributions,because k = k(t)

may tend to = at different rates.
Theorem 2. Let F(-) have a finite mean y and satisfy
(2.10) 1- F(x) = x °h(x)

where h(+) is a slowly varying function and ¢ > 1. Let

(2.11) v, = infix: x %h(x) < 1/t}
and
(2.12) 5, = ut.

Let k = k(t) » « so that

(2.13) t%k = 0(1)

at t + », Then, for x > 0,

(2.14) P{S;t S YieX* ct) + exp(-x"%)

as t + =,




-7 -

Proof: Condition (2.10) implies that the support of F(-) is unbounded above.
The fact that a > 1 implies that F(¢) has a finite mean. There are two more
uses of Condition (2.10) in the proof. The asymptotic distribution of a

maximm from F(+) will be exp(-x'a) (see for instance Galambos (1978, Theorem

2.4.3)); in fact, for x > 0,
(2.15) log p‘(ytx) = t log F(r,x) v ~t(1-F(y,x)) + -x™°

as t + o,

The second use of (2.10) comes in approximating large deviation proba-
bilities of S),. Let q >'¥. Theorem 1 of S. V. Nagaev (1982) states that
under Condition (2.10)

X%
(2.16) li'(Slt >x} = t(1-F(¢)) (1+0(1))

as t + o, uniformly for x > qt. From the definition of Ye in (2.11) and from

(2.15) it can be seen that

t1/0

(2.17) Yy *eastare and Ye = s(t)

where s(t) is slowly varying. Thus

1/a
(2.18) Yt k Ye *

1/a

Condition (2.13) relating k to t can be rewritten as k 2 pt for some

p > 0. Hence, for any x > 0 and q > O,

1/ a

yktx+6t~k ¢X * th > pty,x ¢ ut > qt

for large t since Yo * = From (2.16) and (2.15), it follows that, for
x>0, log P{s‘*“ S VpeX* st} = k log P{slt < yktx+6t} ~ -kl’{slt > yktxﬂﬁt}
~ -kt (1-F(y, X)) + -x® as t » ». This establishes (2.14). 0O

L Al




We will now show how the survival functions Sl(-) and sz(-) of (1.1)
and (1.2) arise naturally from Theorems 1 and 2. From the definition of L
in (2.1),

(2.19) P{L2t} = p{slv;t <d}.
Under the conditions of Theorem 1, this is approximated by
expl-exp((d/0) ((2 1og k) /)%~ (/o) (2t log K)E+ g(k))}
where
g(k) = 2 log k - (1/2)(log log k+ log 4x).

Since log k < (1/2)qzlog t, we can, after ignoring terms involving log t,

approximate the survival function by
exp{-exp(a+ BtE- yt D).

The parameters a, 8, y satisfy -« < qa <®, 8 > 0 and y > 0, since in practice
one would assume that E(Zn) >0and d > 0. This is the survival function
sl(-). Loosely speaking, the assumptions required for this are that the dgmage
distribution P possess moments of order 20q2 and that k tend to » like td /2

or slower.

Under the conditions of Theorem 2, by specializing condition (2.13) to
read

k = pt

for some finite p, the survival function in (2.19) can be approximated by

exp{- %}hu} . em{-p"é%.:(d-ut)'“/s(t)}
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where s(t) is a slowly varying function of t. As before we ignore the slowly

varying function and approximate the survival function by
exp{-8t(1/t - Y) %}

for 0 <t <1l/yand where 8 >0, vy > 0 and a > 1. This leads to the survival
function az(°). Loosely speaking the assumptions required for this are that
the tail of the damage distribution be slowly varying of order a > 1 and
that k tend to = like t® or faster.

We will now give a counterexample to Theorem 1 to show that when condi-
tion (2.4) relacing k to t is violated the asymptotic distributi ~f Sl"t
need not be the double exponential or even one of the other two ‘treme value
distributions. Let Z,10 zlz. ... be independent and identical. !®*<tributed
with P(Z,, =0) = P(Z,, 1) = 1/2. Let k = [2*1og 2], where [-] .s the largest
integer function. Then conditions (2.2) and (2.3) are fulfilled but not con-
dition (2.4). Note that S§t is integer valued and satisfies 0 S;t st.
Further,

P(Sg, St-1} = (1- 2H% .+ 12,
and
p(ss t.k
Sp.st-2} = (1- (e1)/29% 20,

as t + o, Thus the limiting distribution of Sit -t exists and takes on
values -1 and 0 with probabilities 1/2 and 1/2.

In the above, by using Theorem 2, we have given a model for the survival
function Sz(-) only when a > 1. However, it is clear from the form of 82(~)
that it is a survival function for a > -1. When we fit this distribution

in Section 3 we will allow the range of o to be (-1,x).




"y
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By computing derivatives it is easy to see that Sz(-) is IFR for a > 0,
exponential for a = 0 and DFR for -1 < a < 0. Similarly, it can be shown
that S,(-) is IFR when By 2 (9+6/3)/16 = 1.212. If By < (9+6/3)/16, then
the failure rate of Sl(') initially increases, then decreases and finally

becomes an increasing functiom.

3. Fitting Sl(') and Sz(O) to data.

Many authors have proposed probability models to explain observed cancer
incidence rates. Creasy (1981) ascribes the most popular model to Armitage
and Doll (1961) in which a multistage theory of cancer development was pro-
posed. This leads to the Weibull survival function S4(-). Later, Doll (1971)
extended this model to allow for an initial dormant period, which lead to the
shifted Weibull survival fimction 53(-). The cumulative damage threshold
crossing model proposed in this paper suggests two new survival functions,
S,(+) and S,(°).

Doll (1971) gives data on incidence rates (x 100,000) in age groups of
0-4, 5-9, ..., 70-74 years, for several types of cancer in England and Wales
from 1961 to 1963. Denoting the failure rate of Sj(') by rj(-), we estimated

the parameters of Sj(-) by minimizing
16 2
(3.1} izl CICHREACH)

where t, is the midpoint of the ith age group and r(ti) is the corresponding
observed incidence rate. The Nelder-Mead algorithm was used for this mini-
mizatica, as in L. S. Nelson (1973), which included the constraints on the
parameters. The residual sum of squares, namely the minimum value attained

by (3.1), will be denoted by Rj' j=1, ..., 4. This is to be compared with

- ———

4

'
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the corrected sum of squares, Rb' given by

16
(3.2) Ry = L (r(t))-9)?

i=l
where T is the average observed incidence rate.

The datawere classified into seven types of cancer as indicated in
Table 1. The category ‘'other' represents cancer of the bone, testes, rectum
or prostate. Table 1 gives a summary of these results. For all cancer types
except leukemia, Model 1 provided the best fit.

W. Nelson (1972, 1975) examined data on time until failure to insulate
when charges of several thousand volts were applied to parallel plates

separated by an insulating fluid. The parameters of the survival function

Sj(-) were estimated by minimizing the von-Mises statistic

n (B (t,)-5.(t,))?

¢.9 S @S, )
P

J 1

where tl’ cess tn are the observed times of failures arranged in increasing
order, and P (t.) = =1 . The minimum value of (3.3) will be denoted by
Vj, =1, ..., 4. The results are reported in Table 2. Once again, Sl(')
seems to give the best fit,

The third set of data analyzed comes from Proschan (1963) on times to
failure of Boeing 720 aircraft air conditioning units. The following modified
von-Mises statistic was minimized in order to estimate the parameters of slt-)

and SS(°):

2 @yep-s, (e’

is=1 cn(ti)(‘.n(ti)

(3.4)

it

- e




where again tys oeny t aTe the observed times of failure arranged in in-
creasing order, and Cn(ti) = 1-Gn(ti) . Elézﬁ-. The minimum value of (3.4)
will be denoted by W., j = 1, 3. The results are reported in Table 3 and
Sl(-) gave the better fit.

The first data set on cancer appears to have an IFR distribution, while
the second and third data sets indicate DFR distributions. In fact, Proschan
(1963) rejects the hypothesis of constant failure rate in favor of a DFR
distribution for the pooled failure times of all of the air conditionmers.

As fitted to the air conditioner data, Sl(t). has a decreasing failure rate
on the observed range from t = 11.5 to t = 231.7. It is heartening to see

that Sl(-) fares well in all the cases considercd.
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Table 1. Results of fitting 51(-),....54(-) to cancer incidence data from Doll

~«< ™ Q

- ™ R

<R

a
8
Y

'Ro is the corrected sum of squares, (3.2), and R

(1971).
5,(*) $,(2) S50+ S4(*)
Ri parameter Ri parameter Rg parameter R; parameter
estimates estimates estimates estimates
Leukemia (1862 males, Ra = 1.61E-7)
5.21E-9 6.38E-9 4,66E-9 6.39E-9
-1.52E+1 4.14 2,95E-3 4,.69E-3
1.14 1.00E-12 1.52E+1 5.16
1.00E-4 1.01E-4 ~1.64E+2 -
Stomach (9274 males, Ro = 8,34E-6)
3.80E-8 8.27E-8 7.86E-8 8.22E-8
6.80 4.05 6.79E-3 6.71E-3
6.30E-6 1.00E-11 4.93 5.09
8.93E+1 7.57E-5 2.50 .-
Skin (9012 males, Ro = 6,89E-6)
8.54E-9 1.00E-8 9.48E-9 1.01E-8
-6.89 4.09 6.32E-3 6.64E-3
7.81E-1 7.61E-12 5.83 5.12
2.98E+1 9.14E-5 -1.07E+1 --
Lung (26676 males, Ro = 4,88E-5)
4.60E-6 5.85E-6 $.76E-6 5.85E-6
5.15 2.75 7.13E-3 7.04E-3
7.23E-6 8.32E-9 3.63 3.76
6.55E+1 8.3SE-8 2.50 --
Other (10565 males, Ro = 2,28E-5)
2.41E-8 2,.97E-8 2.86E-8 2.93E-8
1.18E+1 6.75 8.77E-3 8.60E-3
3.57E-2 9,30E-17 7.52 7.76
1.35E+2 1.04E-4 2.50 --
All Male (57389 males, Ro = 2,89E-4)
2.34E-6 4.41E-6 4,.23E-6 4,39E-6
7.98 3.73 9.62E-3 9.41E-3
4,82E-7 2.56E-10 4.61 4.76
8.36E¢] 8.94E-5 2.50 --
Breast (21017 females, Ro s 7,76E-6)
1.89E-7 3.96E-7 2.24E-7 3.96E-7
2.53 1.83 4,35E-3 4,66E-3
4.49E-10 2.478-7 2.16 2.83
4.77E+1 5.79E-9 1.75E+1 -

minimized residual sum of squares, (3.1).

5 j=1,...,4 are the




Table 2. Results of fitting sl(-),...,s4(-) to data on failure times of insulators

< e

< ™R
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8
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from W. Nelson (1972, 197S).

sl(') sz(') ss(‘) 84(0)
V; parameter V; parameter V; parameter V: parameter
estimates estimates estimates estimates
32 KV (n = 15) ’
0.107 0.238 0.191 0.205
-0,523 -0.513 0.051 0.047
0.140 0.235 0.424 0.464
0.923 1.469E-3 0.218 -
34 KV (n = 19)
0.341 0.296 0.295 0.303
-0.317 -0.283 0.095 0.094
0.231 0.190 0.675 0.692
1.512 6.357E-3 0.082 -~
36 KV (n = 15)
0.200 0.315 0.249 0.328
1.200 -0.058 0.335 0.295
0.183 0.321 0.836 0.940
2.640 3.738E-2 0.256 --

'Vj. j=1,...,4 are the minimum values of the von-Mises statistic, (3.3).

Table 3. Results of fitting Sl(-) and 83(-) to 213 failures of Boeing air
conditioners from Proschan (1963).

Wi Parameter wg Parameter
estimates estimates
0.3055 0.5532
0.2945 0.1170
0.0728 0.8978
8.7581 1.0000

-wl and u3 are the minimum values of the modified von-Mises statistic, (3.4).
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